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Abstract

A channel optimized vector quantizer (COVQ) is studied for the case of
transmission over waveform channel. In this work, a number of modulation
schemes with multidimensional signal constellations are considered, specifically,
results on the binary signaling, M-ary phase-shift keying (MPSK) and M-ary
quadrature amplitude modulation (MQAM) performance using COVQ over a
waveform channel are provided. The proposed system, based on COVQ with
hard-decision decoding, is optimized for additive white Gaussian noise (AWGN)
and flat-fading Rayleigh channels. In addition, when flat-fading Rayleigh chan-
nel is assumed, diversity techniques are used and evaluated to improve the
performance of the system.

1 Introduction

For source encoding, it is well known that Vector Quantization (VQ) ([1]) is an
asymptotically optimal technique in the rate-distortion sense. Added to this desirable
and theoretical property, nowadays, VQ is becoming a mature technique used for
speech and images coding. Nevertheless, due to omnipresent channel errors, specially
in fading environment, it is of great interest to design robust and optimized VQ
coding systems against channel noise. Traditionally, the source coding and channel
coding procedures are performed separately. Such as separation can be optimal in
the limit of infinite delay, which is naturally not possible in practise due to obvious
reasons. Performing a join source-channel coding we can achieve good performance
at moderate delay and complexity. COVQ systems ([2], [3], [4]) carry out a join
source-channel coding. The mentioned systems are optimized for the case of discrete
memoryless channels (DMC). In [5] a joint source-channel coder is designed with the
particularity that the encoder, the modulator and the decoder are jointly optimized
for a Gaussian channel. More recently, the work [6] evaluates a soft-decision COVQ
system, using binary signaling as modulation technique, optimized for Rayleigh-fading
channels.

In this work we extend COV(Q system study to a multidimensional signal con-
stellation, several modulation schemes (binary signaling, MPSK and MQAM) and
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Figure 1: Block diagram of the system

two channel models (AWGN channel and Rayleigh fading channel including diversity
reception techniques [7]).

2 Problem Statement

Let us consider the diagram of Figure 1 for a block source coding scheme over a

waveform noisy channel.
The encoder « is described by a partition P = {Ag, Ay, ..., Ay_1} of IR such that

a(x) =1, it xe€ A, 1=0,1,....N—1 (1)

x is a source vector of dimension k. The signal mapping block maps an index : to
a signal s which will be subsequently sent over the channel. Specifically, we assume
that we have an elementary signal constellation 7 = {t t!,...,t™~!} consisting of
M signals each of dimension Ly, i.e., t/ € R™, j =0,1,... M — 1. Let us assume
that N = M?%2. Then, the signal s to be sent over the channel is selected from
an expanded signal constellation S = 712, the L,-fold Cartesian product of 7. We
assume that the signal s(¢) used for encoding the index ¢ is given by

s(i) = (£00) ¢ ¢liza-1)) (2)
where (i1,-1%1,-2...11%0) is the representation of ¢ in base M, i.e.,

Ly—1
=3 M (3)
7=0
Note that the effective dimension of the expanded signal set & is L = L1L;. The
ratio L/k is a measure of bandwidth efficiency of the system ([5]).
In principle, we are going to consider that the channel is an additive white Gaus-

sian noise channel. The random channel output r = (rg,ry,...,r_1) is related to the
input vector s = (so, So, ..., Sr,—1) through
riZSi‘I‘Ni, iZO,l,...,L—l (4)

where N!s are independent and identically distributed (i.i.d.) Gaussian random vari-
ables with a common pdf p,.

The decoder 3 makes an estimate x of the source vector x based on the received
vector (channel output) r. In this work we only consider hard-decision decoders,
in which the decoder 3 makes the estimate x indirectly from r as follow. For j =



0,1,..., Ly — 1, an estimate 2] of the index ¢; of the transmitted elementary signal is
made based on (rjn,, 75,41, ...,r(j_|_1)L1_1). Then, the estimate x of source vector is
made based on

Ly—1

i(r) = z_j M7y, (5)

the estimate of the transmitted index .

3 System optimization

In optimizing the scheme of Figure 1, the objective is to minimize the average squared-
error distortion between X and X subject to a constraint on the average transmitted
energy. More precisely, for a given elementary signal set, 7, a given source dimension
k and a given codebook size N, (hence a fixed bandwidth efficiency), we wish to
minimize

D = 2E(X - X|}) (6

subject to

e= TB(ISI) < (7)

where S denotes the L-dimensional signal delivered to the channel.

The lack of any straightforward solution to this problem forces to an algorithmic
iterative solution with two steps. First, we consider the case where the encoder « is
fixed. Then, from estimation theory, the optimum decoder is given as a function of
the received vector r as follow

A

B7(r) = E(X[(r))

L ) "

where P, = Pr(X € A;) and

Ly—1

P(i(r)]i) = 11 P(1ij). (9)

where ¢;’s and 'z]"s are described in (3) and (5) respectively.
Denoting the signal s(7) associated with the index ¢ by s(¢) = (s:.0, 8,1, Si,2y -y Si,0—-1)
and if maximum-likelihood estimation is used in obtaining z;’s, we have

i = argmax p(rjL, TiL41 tcc T(i41)Li—1|m)
m



(7+1)L1-1
= argmax H Py (Tn = Smn) (10)

m n=5l

Notice that in (8), £(X]¢) is the centroid of the encoder region A;, denoted by c;.
Thus, the optimum decoder for a fixed encoder is given by

N_l A .
Fr) = Y P L) (1)
i P((r)
Second, assuming that the decoder is fixed, we shall determine the optimum en-
coder subject to satisfying the energy constraint. Specifically, for resolving this con-
straint problem we consider the Lagrangian function given by

L('P, )\) = D+ )\(6 — 60)

_ % [ F(x, Vpe(x)dx (12)

where

F(x, ) = B(|[x = X|*1X = x) + Mis(a(x))||* — keo) (13)

and A is the Lagrange multiplier. Since px(x) > 0 for all x, minimizing L(P, ) in
(12) is equivalent to minimizing F(x, A) for all x in IR*. We must mention that the
Lagrange multiplier A should be chosen so that the energy constraint (7) is satisfied.
For a given A, the optimum partition P* is described by the optimum encoding regions

Ax(N),i=0,1,...., N — 1, given by

AX(N) = {x: Fi(x, \) < Fj(x, \), ¥} (14)

where

Fi(x, ) = E(lx = XIPJ) + Als()]* ~ keo)
= [IxII* + E(IX)%6) — 2 (x, B(X[i)) + AM[Is()])* — ko) (15)

< +,- > denotes the inner product. Upon denoting E(X\h) by a; and E(HX\HQM by
b;, we can rewrite (14) in the following form

A:()\) _ {X : <X, (ai B aj)> > (bl - b]) + )‘(HSZ(L)HQ - "S(.})"Q)’\V/J} (16)

It is clear from (16) that Af(A) is a convex polyhedron as in conventional vector
quantization design ([1]). Note that the a;’s and b;’s only depend upon the channel
and the decoder. Under the assumption of hard-decision decoding we have

N-1

ai =y A1) Py () (17)

1=0



x € R Encoder | DMC i Decoder
o Channel B

i»

Figure 2: Block diagram of the equivalent system

and

Z 1B Py (1]7) (18)

where we have committed an abuse of notation by using b’(;) to denote ﬂ(z(r)) = [A(r).

A successive application of equations (11) and (16) results in a sequence of encoder-
decoder pairs for which the corresponding average distortion form a non-increasing
sequence of non-negative numbers which has to converge.

3.1 Optimization for Rayleigh fading channels

From expression (6) we get

N-1

_ 1!
k

N-1 )
| {Z Pl x - ﬂ(iw} dx (19)
=0 A =0

where p(x) is the k-dimensional source pdf. With this last expression (19) for the
average distortion and from the condition of a hard-decision decoder, the system can
be viewed (Figure 2) as an equivalent system in which the modulator (included in
signal mapping module of Figure 1), the channel and the demodulator (included in
the decoder of Figure 1) form a DMC. This characteristic explains the equivalency
of the obtained optimum expressions of the encoder and the decoder for a Gaussian
channel and those of COVQ ([4]).

If the channel is a flat-fading Rayleigh channel, r and s are related through

Ti:OéSZ‘—I-NZ', iZO,l,...,L—l (20)

where « is the time varying gain of the channel, which is subject to fading.

For system optimizing, assuming that the channel is a flat-fading Rayleigh channel,
we can consider the same situation (as the DMC channel), with the only difference
that transition probabilities are in this case functions of the received SNR, v, (the

channel SNR, CSNR) defined as

2 €4 p
— a2t 21
v=aiye (21)

where ¢; is the energy of the transmitted signal and Ny is the one-sided spectral
density of the noise. Therefore, to compute the average distortion of the system we



have to use average values of transition probabilities over all values of v. In other
words, we have to compute

PG = [ PUlp(dy €T (22
where P(j|i) are transition probabilities for an AWGN channel and p(7) is the pdf of
7 given by ([8])

1
() = rexp”t >0 (23)

where I' represents the average received SNR.

To optimize the system for transmission over a flat-fading Rayleigh channel we
can use the expressions as in case of AWGN channel using the average transition
probabilities.

In the same way, it is possible to extend the study of the system performance
to the case of using diversity technique to mitigate the effects of deep fades. In
this situation, the most common used technique is antenna diversity. We consider a
B-fold antenna diversity on arbitrary flat-fading Rayleigh channel. Maximum ratio
combining (MRC) and selection combining (SC) are considered as diversity reception
techniques. For these methods, the pdf of v is given by

- MRC with B i.i.d. channels ([8])

1 ~B1 r
Purc (V) = B_1) 15 e/

v>0 (24)

where I' = E{~;} is the average SNR on the kth channel, which is considered
to be the same over all the channels.

- SC (9

pe) =3 (7] e s )

k=1
again I' = E{~.} is the average SNR on the kth channel.

There exists exact expressions to compute integrals (22) for most cases of extended
signal constellations with considered p(v)’s, expressions (23), (24) and (25). They
have been computed carrying out an extra analysis of the resolution of integrals
computed in [8], [9] and [10].

4 Numerical Results and Discussions
In order to provided a performance evaluation of the proposed system, we consider a

first order Gauss-Markov source with correlation coefficients p = 0.9. The results are
given in terms of the output SNR, given by



SNR = —10 log,, D/c? (26)

where D is the per-sample distortion and o? is the source variance, for various values
of the average channel SNR.

Tables 1-7 present performance results for COVQ over waveform channels for
several rates and source vector dimensions. Columns labelled as (1), (2), (3) and (4)
show performance results for an AWGN channel, Rayleigh channel, Rayleigh channel
with a 2-fold MRC diversity receiver and Rayleigh channel with a 2-fold SC diversity
receiver, respectively.

From the obtained results it is observed that COVQ systems with QAM modu-
lation achieve better or, at least, the same SNR performance than those with PSK
modulation with the same system parameters, due to the higher probability of sym-
bol error of PSK signal constellations. For binary signaling (binary PSK, BPSK),
compared to QAM modulation performance, better results are achieved for slight or
moderate noisy channel, for example, for a CNSR of 6 dB o greater in Table 4 binary
signaling gives better or same results than QAM with L = 2. However, the binary
signaling performance is not favorably compares for very noisy channel condition (less
than a CNSR of 3 db in the previous example). In addition, it is observed that when
the factor L/k increases the performance is better for slight or moderate noisy channel
and poor for a noisy channel with respect to smaller values of L/k. For example, for
a CNSR of 6 dB o greater in Table 4, QAM with L = 4 gives better or same results
with respect to QAM with L = 2. However,it gives poor results for a CNSR of 3 dB
or less.

From results obtained for different channel models, it is observed that there is a
severe penalty in system performance for a Rayleigh channel. However, the system
performance can be improved when a diversity technique reception is used. The MRC
technique is favorably compared to SC technique, as expected, but with the incurred
penalty of having a higher cost of implementing that technique.

5 Conclusions

In this work COVQ system is generalized for transmission over waveform channels
under the assumptions of hard-decision decoding. Several modulation techniques have
been studied, concluding that it is better to use QAM instead of PSK. With respect
to binary signaling, this modulation technique is preferable when the channel is not
very noisy. The study are applied to Rayleigh channel without and with the usage of
diversity technique reception. It is shown that with a two-branch diversity reception,
compared to the AWGN channel, similar performance results can be obtained.
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CSNR (ED_I;) (%‘il\f) BPSK
(dB) - -
1H 2 @ O @ 6w O @ 6w
8.0 652 6.37 6.562 6.562  6.52 6.37 6.52 6.52 __ 6.52 6.37 6.52 6.52
15.0 6.52 6.23 6.52 6.52  6.52 6.23 6.52 6.52  6.52 6.23 6.52 6.52
12.0 6.52 5.97 6.51 6.50  6.52 5.97 6.51 6.50  6.52 5.97 6.51 6.50
9.0 6.52 5.52 6.47 6.42  6.52 5.52 6.47 6.42  6.52 5.52 6.47 6.42
6.0 6.52 4.81 6.34 6.19  6.52 4.81 6.34 6.19  6.52 4.81 6.34 6.19
3.0 6.34 3.86 5.93 5.57  6.34 3.86 5.93 5.57  6.34 3.86 5.93 5.57
0.0 5.06 2.79 5.03 4.42  5.06 2.79 5.03 4.42  5.06 2.79 5.03 4.42
-3.0 3.04 1.80 3.66 3.00  3.04 1.80 3.66 3.00  3.04 1.80 3.66 3.00

Table 1: Output SNR for a first order Gauss-Markov source, correlation factor p = 0.9;
k =4; R, = 0.5 bits/sample; N =4



CSNR PSK QAM PSK QAM BPSK
(4B) (L=4) (L=4) (L=2) (L=2)

H @ E @ O e 6@ O @ 6@ @ 2 E @ O @) (3 ¢
18.0 7.81 7.81 7.56 7.81 7.81  7.81 7.21 7.79 7.77  7.81 7.53 7.81 7.80  7.81 7.56 7.81 7.81
15.0 7.81 7.81 7.33 7.81 7.80  7.81 6.92 7.73 7.66  7.81 7.30 7.80 7.78  7.81 7.33 7.81 7.80
12.0 7.82 6.91 7.82 6.92 7.80 7.77  7.77 6.52 7.54 7.36  7.81 6.37 7.76 7.71  7.82 6.92 7.79 7.77
9.0 7.82 6.35 7.73 7.66  7.82 6.25 7.77 7.64  7.26 5.92 7.21 7.00  7.81 6.37 7.63 7.49  7.82 6.25 7.73 7.65
6.0 7.81 5.43 7.53 7.30  7.81 5.28 7.65 7.23  6.83 5.30 6.74 6.44  7.53 5.67 7.29 7.00  7.81 5.28 7.51 7.27
2.0 7.52 4.28 6.92 6.40  7.52 4.63 7.28 6.26  6.21 4.57 6.28 5.78  6.57 4.80 6.62 6.25  7.52 4.99 6.89 6.35
0.0 5.67 2.62 5.68 4.90  5.67 3.49 6.45 5.21  5.49 3.77 5.48 4.96  5.58 3.89 5.78 5.35  5.67 4.04 5.60 4.81
-3.0 4.37 2.77 4.59 4.04  4.37 2.44 5.20 3.72  4.71 2.92 4.66 4.15  4.71 2.98 4.84 4.37  4.37 2.97 4.87 4.26

Table

k =8; R, = 0.5 bits/sample; N = 16

CSNR (ED_I;) (%‘il\f) BPSK
(dB) - -
1H @ @ @w O @G E@ @6 O @ E@ W
18.0 7.2 7.50 7.02 7.01  7.92 7.50 7.92 7.91  7.92 7.49 7.92 7.91
15.0 7.92 7.13 7.90 7.88  7.92 7.13 7.90 7.88  7.92 7.10 7.90 7.88
12.0 7.92 6.51 7.84 7.78  7.92 6.51 7.84 7.78  7.92 6.47 7.84 7.77
9.0 7.92 5.50 7.65 7.44  7.92 5.50 7.65 7.44  7.92 5.52 7.64 7.43
6.0 7.65 4.41 7.08 6.58  7.65 4.41 7.08 6.58  7.65 4.32 7.07 6.56
3.0 5.90 3.14 5.87 5.09  5.90 3.14 5.87 5.09  5.90 3.05 5.84 5.05
0.0 3.42 2.01 4.16 3.38  3.42 2.01 4.16 3.38  3.42 1.94 4.12 3.34
-3.0 1.76 1.17 2.56 1.98  1.76 1.17 2.56 1.98  1.76 1.13 2.52 1.95

2: Output SNR for a first order Gauss-Markov source, correlation factor p = 0.9;

Table 3: Output SNR for a first order Gauss-Markov source, correlation factor p = 0.9;
k =2; R, = 1.0 bits/sample; N =4

CSNR PSK QAM PSK QAM BPSK
(dB) (L=4) (L=4) (L=2) (L=2)

n @ @ W O @ @ W m 2 @ W O (2 @ W L (2 3 W
18.0 10.17 10.17 9.29 10.17 10.15  10.17 8.96 10.03 9.92  10.17 9.25 10.14 10.11 _ 10.17 9.30 10.16 10.15
15.0 10.18 8.60 10.17 8.61 10.15 10.08  10.10 8.43 9.75 9.51 10.17 8.67 10.05 9.95 10.17 8.63 10.13 10.09
12.0 10.18 7.76 10.01 9.87  10.18 7.61 10.08 9.83 9.47 7.60 9.29 9.08 10.15 7.96 9.80 9.58 10.18 7.64 10.01 9.86
9.0 10.17 6.46 9.62 9.23 10.17 6.25 9.85 9.12 8.74 6.72 8.81 8.43 9.64 7.02 9.23 8.80 10.17 6.30 9.60 9.19
6.0 9.62 5.65 8.63 7.84 9.62 5.55 9.21 7.63 8.11 5.79 8.08 7.64 8.35 5.93 8.38 7.91 9.62 6.13 8.58 7.78
3.0 6.81 4.30 6.81 6.50 6.81 4.14 7.91 6.31 7.25 4.71 7.06 6.61 7.24 4.80 7.31 6.84 6.81 4.87 6.73 6.74
0.0 5.27 3.22 5.71 4.93 5.27 3.19 6.53 4.48 6.06 3.55 5.99 5.36 6.01 3.61 6.13 5.48 5.27 3.50 5.94 5.18
-3.0 3.24 2.13 4.05 3.34 3.24 2.22 5.35 3.30 4.25 2.57 4.59 3.96 4.40 2.51 4.70 4.04 3.24 2.27 4.25 3.51

Table 4: Output SNR for a first order Gauss-Markov source, correlation factor p = 0.9;
k =4; R, = 1.0 bits/sample; N = 16




- PSK QAM PSK QAM
CSNR :
(4B) (L=8) (L=8) (L=4) (L=4)
1 @ @ W 1 = ¢ » 1 2 ¢ W O @ G “w
8.0 11.43 11.43 10.25 11.42 11.39  11.43 11.43 10.12 11.41 11.33
15.0 11.44 11.43 9.38 11.40 11.29  11.29 11.43 9.68 11.34 11.09
12.0 11.44 8.63 10.57 11.44 8.60 11.29 10.91  10.62 8.56 9.98 11.40 9.12 11.11 10.51
9.0 11.42 7.80 10.60 10.12  11.43 7.53 10.94 9.92 9.90 7.67 9.96 9.60  10.65 8.23 10.58 9.97
6.0 10.63 6.63 9.57 9.09 10.62 6.28 10.05 8.74 9.20 6.64 9.15 8.69  9.52 7.19 10.17 9.21
3.0 8.66 5.27 8.42 7.58 8.66 4.92 8.96 7.14 8.20 5.49 8.07 7.53  8.29 6.08 9.49 8.14
0.0 6.31 3.93 6.65 5.85 6.32 3.79 7.58 5.41 6.91 4.33 6.79 6.13  6.97 4.86 8.52 6.86
-3.0 4.24 2.80 4.93 4.17 4.25 2.75 6.13 4.00 5.01 3.21 5.41 4.68  5.41 3.63 7.42 5.41
CSNR (ib_g) ((%51\2/[) BPSK
(dB) - -
1 2 B3 W @O @ 6 W 1 2 3 @
18.0 9.42 8.23 0.47 9.27 10.94 9.69 10.75 10.65  11.43 10.17 11.41 11.40
15.0 9.00 7.73 9.03 8.80 10.39 9.05 10.49 10.24  11.43 9.31 11.36 11.30
12.0 8.50 7.10 8.53 8.25 9.71 8.32 9.94 9.60 11.44 9.13 11.18 10.96
9.0 7.90 6.48 7.91 7.61 9.12 7.44 9.23 8.87 11.43 8.34 10.59 10.04
6.0 7.30 5.68 7.28 7.00 8.39 6.55 8.52 8.09 10.62 7.22 9.78 9.30
3.0 6.62 4.81 6.59 6.21 7.59 5.61 7.70 7.23 8.66 5.95 8.74 7.97
0.0 5.81 3.92 5.79 5.37 6.59 4.54 6.74 6.20 6.33 4.53 7.08 6.31
-3.0 4.82 3.05 4.84 4.37 5.46 3.47 5.73 5.04 4.25 3.21 5.37 4.56

Table 5: Output SNR for a first order Gauss-Markov source, correlation factor p = 0.9;

k=8, R, =

1.0 bits/sample; N = 256

CSNR ED_I; %‘ig/[ BPSK
e (L=2) (L=2)
1 2 ¢ @ 1 2 3 @ 1 2 3 @
18.0 13.36 10.66 12.57 12.05  13.54 10.75 13.30 13.11 _ 13.54 10.63 12.44 13.35
15.0 11.76 9.49 11.38 11.89 13.50 9.77 12.80 12.34 13.55 9.07 13.17 12.87
12.0 11.01 8.25 10.93 10.87  12.45 8.47 11.71 11.03 13.53 7.24 12.36 11.60
9.0 10.07 6.83 9.89 9.57 10.50 7.00 10.45 9.81 12.38 7.09 10.52 9.27
6.0 8.73 5.45 8.47 8.04 8.73 5.51 8.96 8.15 7.91 5.57 7.81 6.47
3.0 7.02 4.10 6.94 6.30 7.14 4.08 7.21 6.38 6.05 3.95 6.91 5.93
0.0 4.74 2.85 5.18 4.46 5.06 2.81 5.43 4.59 3.65 2.54 4.83 3.96
-3.0 2.89 1.89 3.57 3.00 3.09 1.80 3.70 3.02 2.05 1.51 3.02 2.39

Table 6: Output SNR for a first order Gauss-Markov source, correlation factor p = 0.9;
k =2; R, = 2.0 bits/sample; N = 16

CSNR PSK QAM PSK QAM BPSK
(aB) (L=4) (L=4) (L=2) (L=2)

1 @ @ @ 1 (2 () () 1 (2 (3 (@) L (2 (3 @ L (2 (3 @
18.0 15.42 9.57 15.75 12.55 15.49 14.92  11.79 10.02 11.79 11.45  13.81 11.43 14.01 13.62  15.75 12.61 15.56 15.38
15.0 14.29 8.10 15.66 11.42 14.96 13.81  11.07 9.10 11.06 10.72 12.71 10.34 13.07 12.56  15.75 11.75 15.08 14.56
12.0 13.11 6.63 13.10 12.47  14.07 10.09 13.91 12.03  10.29 8.20 10.31 9.97 11.82 9.23 12.04 11.51 15.72 10.51 13.77 12.71
9.0 11.94 5.13 11.73 11.03  12.14 8.63 13.28 11.87 9.48 7.13 9.49 9.01 10.93 8.01 10.97 10.26 13.79 8.92 12.58 11.86
6.0 10.50 3.74 10.19 9.44 10.41 7.16 12.11 10.53 8.54 6.01 8.49 8.05 9.77 6.73 9.75 9.08 10.79 7.24 11.00 9.96
2.0 8.64 2.58 8.52 7.61 8.68 5.77 10.66 8.69 7.56 4.86 7.44 6.87 8.24 5.43 8.56 7.65 7.71 5.45 8.77 7.66
0.0 6.15 1.66 6.61 5.72 6.54 4.24 8.85 6.47 6.22 2.70 6.19 5.53 6.93 4.17 7.08 6.32 5.13 2.71 6.49 5.34
-3.0 3.91 1.01 4.75 3.98 4.45 3.04 7.27 4.78 4.33 2.62 4.74 4.06 5.20 2.99 5.50 4.77 3.23 2.43 4.29 3.31

Table 7: Output SNR for a first order Gauss-Markov source, correlation factor p = 0.9;
k =4; R, = 2.0 bits/sample; N = 256
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